• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Lehrstuhl für Angewandte Physik
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Naturwissenschaftliche Fakultät
  3. Department Physik
Suche öffnen
  • en
  • de
  • Campo
  • StudOn
  • UnivIS
  1. Friedrich-Alexander-Universität
  2. Naturwissenschaftliche Fakultät
  3. Department Physik
Friedrich-Alexander-Universität Lehrstuhl für Angewandte Physik
Menu Menu schließen
  • Lehrstuhl
    • Symposium Siliziumkarbid als quanten-klassische Plattform – 75-jähriges Jubiläum des Lehrstuhls für Angewandte Physik
    • Team
    • Heliumverflüssigung
    • Ionenimplanter
    • Mechanische Werkstatt
    • Kontakt / Anfahrt
    Portal Lehrstuhl
  • Forschung (Weber)
    • Siliziumkarbid und epitaktisches Graphen: Elektronische Eigenschaften
    • Siliziumkarbid und epitaktisches Graphen: die Licht/Materie Schnittstelle
    • Molekulare Materialien: Elektronische Eigenschaften
    • Molekulare Materialien: Licht/Materie-Schnittstelle
    • Forschungsdatenmanagement
    • Publikationen (Weber, Krieger, Malzer)
    Portal Forschung (Weber)
  • Forschung (Krstić)
    • Quantum-Nanodraht Elektronik mit (wide-bandgap) Halbleitern
    • 2D Lagenmaterialien – elektronische Wechselwirkungs-Phänomene
      • Elektronische Bauelemente auf Basis des 2D-Materials schwarzer Phosphor – lagenanzahlabhängige Eigenschaften
      • Tuning the properties of NanoCarbon with Fluorination
      • Controlling Electronic Properties of Individual Synthetic Carbon Allotropes by Physical and Chemical Routes
    • Helikale 3D Nanostrukturen – kooperative und anisotrope Elektronik und Optik im PT-brechendem Regime
    • Weitere Projekte
      • 3D-ASG-Herstellung via Sputterverfahren
      • Development of a production method of ASG components based on W-particle/resist composites
      • Towards increasing digital image resolution: Metal microarray structures with high-filling (structured) walls for X-ray attenuation in medical detector technologies
      • Quantenkooperative helikale Metafilme zur Erzeugung von nichtklassischem Licht (C05)
    • Publikationen (Krstić)
    Portal Forschung (Krstić)
  • Lehre
    • Lehrveranstaltungen
    • Doktorarbeiten
    • Masterarbeiten
    • Bachelorarbeiten
    • Zulassungsarbeiten
    • Jobangebote für Studierende
    • Weihnachtsvorlesung 2015
    Portal Lehre
  1. Startseite
  2. Forschung (Krstić)
  3. 2D Lagenmaterialien – elektronische Wechselwirkungs-Phänomene
  4. Elektronische Bauelemente auf Basis des 2D-Materials schwarzer Phosphor – lagenanzahlabhängige Eigenschaften

Elektronische Bauelemente auf Basis des 2D-Materials schwarzer Phosphor – lagenanzahlabhängige Eigenschaften

Bereichsnavigation: Forschung (Krstić)
  • Quantum-Nanodraht Elektronik mit (wide-bandgap) Halbleitern
  • 2D Lagenmaterialien – elektronische Wechselwirkungs-Phänomene
    • Elektronische Bauelemente auf Basis des 2D-Materials schwarzer Phosphor - lagenanzahlabhängige Eigenschaften
    • Tuning the properties of NanoCarbon with Fluorination
    • Controlling Electronic Properties of Individual Synthetic Carbon Allotropes by Physical and Chemical Routes
  • Helikale 3D Nanostrukturen – kooperative und anisotrope Elektronik und Optik im PT-brechendem Regime
  • Weitere Projekte

Elektronische Bauelemente auf Basis des 2D-Materials schwarzer Phosphor – lagenanzahlabhängige Eigenschaften

Elektronische Bauelemente auf Basis des 2D-Materials schwarzer Phosphor - lagenanzahlabhängige Eigenschaften

(Drittmittelfinanzierte Einzelförderung)

Titel des Gesamtprojektes:
Projektleitung: Vojislav Krstic
Projektbeteiligte: Andreas Hutzler
Projektstart: 1. April 2021
Projektende:
Akronym:
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
URL:

Abstract

Zweidimensionale Schichtmaterialien zeigen aufgrund ihrer außerordentlichen Eigenschaften enormes Potential hinsichtlich des Einsatzes in elektronischen Bauelementen. Die Verwendung dieser Materialien ist jedoch noch immer mit erheblichen Herausforderungen verbunden, insbesondere da diese Schichtmaterialien lagenanzahlabhängige Eigenschaften aufweisen, welche die potentiellen Bauelementefunktionalitäten maßgeblich bestimmen. Systematische Studien zu Herstellungsprozessen von Bauelemente, einschließlich deren Optimierung, sowie deren resultierender elektrischer Funktionalitäten unter Berücksichtigung der Lagenanzahlund möglicher Anisotropien fehlen bis jetzt weitgehend. Derartige umfassende Untersuchungen sind intrinsisch komplex und herausfordernd, weil dabei zerstörungsfreie Methoden zur Bestimmung der Lagenanzahl von im Bauelement integrierten 2D Materialien und Messungen der lagenanzahlabhängigen elektrischenEigenschaften kombiniert und aufeinander abgestimmt werden müssen. Im hier beantragten Projekt werden analytische Reflektanzspektroskopie und elektrische Transportmessungen an auf dem 2D-Material schwarzer Phosphor basierenden Bauelementen methodisch zusammengeführt, um dadurch den Einfluss der Einzellagenanzahl auf die Bauelementeigenschaften eindeutig zu bestimmen. Dabei werden Bauelemente unterschiedlicher Architekturen in Hinblick auf deren lagenabhängigen Eigenschaften und der Anisotropie des schwarzen Phosphors untersucht. Diese Eigenschaften beinhalten sowohl rein elektronische als auchvalleytronische Aspekte. Die Anzahl der Einzellagen wird hierbei mit einem speziellen optischen Verfahren, welches die spektralen Reflektanzeigenschaften des Materials ausnutzt, ermittelt. Zur Variation der Bauelementearchitekturen kommen laterale undvertikale Kontaktierung, verschiedene Gate-Dielektrika, Tunnelkontakte und unterschiedliche Oberflächenpassivierungen zum Einsatz. Als grundlegende und zur elektrischen Evaluation genutzte Funktionsprinzipien werden derFeld-Effekt, der Hall-Effekt und der Valley-Hall-Effekt ausgenutzt. Die gewonnenen Erkenntnisse sollen dazu beitragen ein grundlegendes Verständnis der Eigenschaften von 2D-Materialien hinsichtlich ihrer Nutzbarkeit in der modernen und zukunftsorientierten Elektronik zu schaffen.

Publikationen

    Lehrstuhl für Angewandte Physik
    Friedrich-Alexander-Universität Erlangen-Nürnberg

    Staudtstr. 7 / Bau A3
    91058 Erlangen
    • Impressum
    • Datenschutz
    • Barrierefreiheit
    • Facebook
    • RSS Feed
    • Twitter
    • Xing
    Nach oben